Ellison, R. D. \& Levy, H. A. (1965). Acta Cryst. 19, 260.
Ellison, R. D. \& Levy, H. A. (1970). Private communication.
El Saffar, Z. M. (1965). Unpublished work.
El Saffar, Z. M. (1966). Acta Cryst. 20, 310.
Friedberg, S. A. \& Wasscher, J. D. (1953). Physica, 19, 1072.

Gardner, W. E. (1960). Bull. Amer. Phys. Soc. 5, 458.
Hamilton, W. C. (1965). Acta Cryst. 18, 502.
Henry, W. E. (1953). Phys. Rev. 91, 431.
Johnson, C. K. (1965). ORTEP, A Fortran ThermalEllipsoid Plot Program for Crystal Structure Illustrations. Report ORNL-3794, revised, Oak Ridge National Laboratory, Tennessee.

Padmanabhan, V. M., Busing, W. R. \& Levy, H. A. (1963). Acta Cryst. 16, A26.
Spence, R. D., Middents, P., El Saffar, Z. M. \& Kleinberg, R. (1964). J. Appl. Phys. 35, 854.
Spence, R. D. \& Nagarajan, V. (1966). Phys. Rev. 149, 191.

Wehe, D. J., Busing, W. R. \& Levy, H. A. (1962). A Fortran Program for Calculating Single Crystal Absorption Corrections ORNL-TM-229. Oak Ridge National Laboratory, Tennessee.
Worsham, J. E., Jr \& Busing, W. R. (1969). Acta Cryst. B25, 572.
Zalkin, A., Forrester, J. D. \& Templeton, H. (1964). Inorg. Chem. 3, 529.

Acta Cryst. (1971). B27, 73

The Crystal and Molecular Structure of Bis(dimethyl-o-thiolophenylarsine)platinum(II)

By J.P.Beale and N. C. Stephenson
School of Chemistry, University of New South Wales, Sydney, Australia

(Received 19 February 1970)
The crystal structure of the platinum thiol resulting from S-demethylation of the ligand dimethyl-omethylthiophenylarsine has been examined using three-dimensional X-ray data collected initially by photographic techniques and finally on a Siemens automatic single-crystal diffractometer. The complex crystallizes in the monoclinic space group $P 2_{1} / c$ with two molecules in a unit cell of dimensions $a=7.818(2), b=9.662(2), c=13.052$ (3) $\AA, \beta=102.84(6)^{\circ}$. The molecule is a trans isomer in which the thiol functions as a bidentate ligand. The molecule is planar and the $\mathrm{Pt}-\mathrm{As}$ bond distance is short, indicating $d \pi-d \pi$ bonding between the platinum atom and the thio-arsenic chelate.

Introduction

Mono and bis chelated complexes of dimethyl-omethylthiophenylarsine (I) $\left(\mathrm{As-SCH}_{3}\right)$ of the types

(I)
$\operatorname{Pd}\left(\mathrm{As}-\mathrm{SCH}_{3}\right) X_{2}, \mathrm{M}\left(\mathrm{As}-\mathrm{SCH}_{3}\right)_{2} \mathrm{X}_{2}(\mathrm{M}=\mathrm{Pd}, \mathrm{Pt} ; \mathrm{X}=\mathrm{Cl}$, $\mathrm{Br}, \mathrm{I}), \mathrm{Pt}\left(\mathrm{As}-\mathrm{SCH}_{3}\right) \mathrm{I}_{2}$ and $\left[\mathrm{Pt}\left(\mathrm{As}-\mathrm{SCH}_{3}\right)_{2}\right][\mathrm{PtX} 4]$ ($\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$) have been reported (Livingstone, 1958; Chiswell \& Livingstone, 1960). S-Demethylation of the ligand occurs when these compounds are heated under reflux in dimethylformamide (DMF), as shown in schemes I-III (Lindoy, Livingstone \& Lockyer, 1967).

Scheme I

$\mathrm{M}=\mathrm{Pd}, \mathrm{X}=\mathrm{Cl}, \mathrm{Br}$ and $\mathrm{M}=\mathrm{Pt}, \mathrm{X}=\mathrm{Cl}, \mathrm{I}$

Scheme II

Scheme III

There are interesting structural implications involved with these schemes. Thus, in scheme I, the compounds $\mathrm{M}\left(\mathrm{As}-\mathrm{SCH}_{3}\right)_{2} \mathrm{X}_{2}$ might well be examples of sixcoordinate, diamagnetic d^{8} complexes. Verification of octahedral coordination in these compounds has been limited (Stephenson, 1962; Stephenson \& Jeffrey, 1963; Duckworth \& Stephenson, 1969). In fact
$\mathrm{Pd}\left(\mathrm{As}-\mathrm{SCH}_{3}\right)_{2} \mathrm{I}_{2}$
has been shown to be a trans 4-covalent square-planar complex with no metal-sulphur bonding (Beale \& Stephenson, 1970). Also the compounds M(As-S) ${ }_{2}$ can exist as cis or trans isomers and, in addition, these complexes strongly clathrate with solvents to form compounds such as $\mathrm{Pd}(\mathrm{As}-\mathrm{S})_{2}$ pyridine.

We are investigating the crystal structures of a number of compounds which are represented in schemes I-III, and report below the structure of bis(dimethyl-o-thiolophenylarsine)platinum(II), $\mathrm{Pt}(\mathrm{As}-\mathrm{S})_{2}$.

Experimental

Yellow crystals of bis(dimethyl-o-thiolophenylarsine)platinum(II) were prepared by the method of Lindoy,

Livingstone \& Lockyer (1967) and recrystallized from ethanol.
Small crystals are shaped as parallelepipeds with (100), (011) and $01 \overline{1}$) faces most prominently developed. The unit-cell dimensions and final intensity data were measured on a four-circle Siemens automatic singlecrystal diffractometer using a crystal of dimensions $0.005 \times 0.012 \times 0.012 \mathrm{~cm} . \mathrm{Cu} K \alpha$ radiation $\left[\lambda\left(K \alpha_{1}=\right.\right.$ 1.54051, $\lambda\left(K \alpha_{2}\right)=1.54433 \AA$] and Ni attenuators.

The unit-cell constants were calculated from the angular settings of five high-order axial reflexions. The integrated intensities were recorded by a $\theta-2 \theta$ scan using the five-value method (Hoppe, 1965). The scan range varied from $1 \cdot 0^{\circ}$ at low 2θ to 2.8° at high 2θ while the scan speed, although automatically con-

Table 1. Observed and calculated structure factors for bis(dimethyl-o-thiolophenylarsine)platinum(II)
The columns, from left to right, read $h, k, l, F_{0 \text { os }}$ and $F_{\text {calc }}$, where the values of $F_{\text {obs }}$ and $F_{\text {calc }}$ are recorded on ten times the absolute scale. The symbol ' U ' denotes an unobserved reflexion and occurs whenever the total peak count recorded for a particular reflexion is less than one standard deviation above the background count. An asterisk denotes a reflexion affected by extinction and these data were excluded from the least-squares refinement.

trolled by the instrument, was set with an upper time limit of 0.6 sec per step of 0.01°. The standard reflexion 008 was recorded after every 15 observations and used as a check on crystal and instrumental drift. The occurrence of significant drifts in crystal orientation or instrumental settings then required the calculation of new setting matrices following the method of Busing \& Levy (1967).

Bis(dimethyl-o-thiolophenylarsine)platinum(II)

$\mathrm{PtAs}_{2} \mathrm{~S}_{2} \mathrm{C}_{16} \mathrm{H}_{2} \quad$ F.W. $=621 \cdot 37$.
Monoclinic: $a=7.818(2), b=9.662(2), c=13.052(3) \AA$; $\beta=102 \cdot 814(6)^{\circ} ; U=961 \AA^{3} ; Z=2$.
$D_{m}=2 \cdot 18$ g.cm ${ }^{-3}$ (by flotation in methylene iodide and toluene solutions); $D_{c}=2 \cdot 15 \mathrm{~g} . \mathrm{cm}^{-3}$.
Linear absorption coefficient μ, for $\mathrm{Cu} K \alpha$ radiation is $215.57 \mathrm{~cm}^{-1}$.

The intensity data were initially collected on multi-ple-film equi-inclination Weissenberg photographs $(\mathrm{Cu} K \alpha)$ taken around [010], $(k=0,1, \ldots 7)$. A total of 1555 intensities were estimated by visual comparison with a calibrated strip. Correlation data were obtained from zero level precession photographs and were adequate during the initial stages of the structure analysis. This visual data after corrections for Lorentz and polarization effects was used to determine the approximate structure. The diffractometer data collected at a later date and corrected for Lorentz, polarization and absorption effects were then used in the final refinement of the structure.

Determination and refinement of the structure

A three-dimensional Patterson function was computed from which the arsenic and sulphur atom posi-

Table 1 (cont.)

位

 $c=$ c c
tions were determined. The platinum atoms, numbering only two in the unit cell, were placed in position 2(a) of the space group $P 2_{1} / c$. The remaining carbon atoms were located using successive cycles of structure factors and difference Fourier syntheses.

The atomic parameters were refined by full-matrix least-squares methods in which the values of $\sum W\left(\left|F_{\text {obs }}\right|\right.$ $-\left|F_{\text {calc }}\right|^{2}$ were minimized. A weighting scheme based upon the counting statistics for each observation was used in the least-squares refinement (Craig, 1969). The isotropic refinement converged to a reliability index (R) of $0 \cdot 111$. One further cycle using anisotropic temperature parameters reduced the value of R to 0.035 . At this stage a difference Fourier synthesis was calculated from which it was possible to ascertain the approximate positions of all twenty hydrogen atoms. Further least-squares refinements were now carried out in which positional and thermal parameters of all nonhydrogen atoms were varied. Hydrogen positional par-
ameters were not varied and temperature parameters for these atoms were fixed at $8 \AA^{2}$ (Kastalsky \& McConnell, 1969). The final value of R was 0.029 .
For the calculation of structure factors the atomic scattering factors for $\mathrm{Pt}, \mathrm{As}, \mathrm{S}$ and C were computed from numerical Hartree-Fock wave functions using the method of Cromer \& Mann (1968). The scattering factors for hydrogen were taken from International Tables for X-ray Crystallography (1968).

The observed and calculated structure factors are listed in Table 1.
A correction for the real and imaginary components of the anomalous dispersion of all atoms for $\mathrm{Cu} \mathrm{K} \alpha$ radiation was applied (Dauben \& Templeton, 1955). An IBM 360/50 computer was used for all calculations together with local versions of well established programs (Craig, 1969).

The final atomic parameters for the crystallographically independent atoms, together with estimated

Table 1 (cont.)

Table 1 (cont.)

standard deviations, are listed in Table 2. The components of anisotropic vibration are given in Table 3.

Table 2. Final fractional atomic coordinates for
bis(dimethyl-o-thiolophenylarsine)platinum(II)
Standard deviations are given in brackets and refer to the last two decimal places in the preceding coordinate.

	x / a	y / b	z / c
Pt	0.0	0.0	0.0
As	$-0.05382(14)$	$-0.16862(11)$	$0.11917(8)$
S	$0.26108(35)$	$0.04682(27)$	$0.11722(21)$
$\mathrm{C}(1)$	$-0.2620(14)$	$-0.1525(12)$	$0.1752(9)$
$\mathrm{C}(2)$	$-0.0563(16)$	$-0.3605(11)$	$0.0744(9)$
$\mathrm{C}(3)$	$0.1412(13)$	$-0.1552(10)$	$0.2364(6)$
$\mathrm{C}(4)$	$0.2691(13)$	$-0.0601(10)$	$0.2283(9)$
$\mathrm{C}(5)$	$0.4150(14)$	$-0.0487(12)$	$0.3135(9)$
$\mathrm{C}(6)$	$0.4320(16)$	$-0.1312(14)$	$0.4000(9)$
$\mathrm{C}(7)$	$0.3037(18)$	$-0.2287(14)$	$0.4077(9)$
$\mathrm{C}(8)$	$0.1578(16)$	$-0.2387(12)$	$0.3267(9)$
$\mathrm{H}(1)$	0.0450	-0.2801	0.3150
$\mathrm{H}(2)$	0.3010	-0.3001	0.4700
$\mathrm{H}(3)$	0.5240	-0.1560	0.4680
$\mathrm{H}(4)$	0.5200	0.0170	0.3210
$\mathrm{H}(5)$	0.0710	-0.4061	0.0867
$\mathrm{H}(6)$	-0.1476	-0.3929	0.0028
$\mathrm{H}(7)$	-0.0674	-0.4479	0.1332
$\mathrm{H}(8)$	-0.3700	-0.1620	0.1190
$\mathrm{H}(9)$	-0.2700	-0.0500	0.1780
$\mathrm{H}(10)$	-0.2280	-0.2400	0.2300

Table 3. The tensor components ($\times 10^{3}$) describing the anisotropic vibration of the atoms in bis(dimethyl-o-thiolophenylarsine)platinum(II)
The tensor components $U_{i j}$ are those occurring in the temperature factor $\exp \left[-2 \pi^{2}\left(h^{2} a^{* 2} U_{11}+2 h k a^{*} b^{*} U_{12}+\ldots\right)\right]$ so that, for instance, U_{11} is the mean-square amplitude of vibration parallel to \mathbf{a}^{*}.
All hydrogen atoms during the refinement were assigned, arbitrarily, an isotropic temperature factor, B, equal to $8 \cdot 0 \AA^{2}$.

	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Pt	$62 \cdot 5$	$38 \cdot 9$	$51 \cdot 3$	$3 \cdot 30$	$13 \cdot 1$	$1 \cdot 9$
As	$64 \cdot 6$	$42 \cdot 8$	$57 \cdot 8$	$3 \cdot 00$	$13 \cdot 5$	$0 \cdot 10$
S	69.9	$57 \cdot 9$	$63 \cdot 6$	$8 \cdot 17$	12.0	0.72
C(1)	$67 \cdot 8$	82.7	98.8	$5 \cdot 81$	21.5	$5 \cdot 7$
C(2)	103.0	$43 \cdot 6$	97.2	3.93	17.4	$8 \cdot 1$
C(3)	$66 \cdot 8$	$50 \cdot 6$	$57 \cdot 6$	$0 \cdot 15$	11.9	$2 \cdot 3$
C(4)	$60 \cdot 2$	$51 \cdot 8$	$62 \cdot 3$	$1 \cdot 12$	$13 \cdot 4$	$5 \cdot 3$
C(5)	$64 \cdot 7$	$73 \cdot 1$	71.6	3.01	9.0	$5 \cdot 5$
C(6)	$79 \cdot 2$	88.4	68.9	$10 \cdot 82$	$7 \cdot 7$	1.7
C(7)	$89 \cdot 6$	$80 \cdot 5$	$75 \cdot 5$	7.28	$9 \cdot 8$	$5 \cdot 7$
C(8)	$81 \cdot 7$	$70 \cdot 3$	$66 \cdot 7$	$0 \cdot 83$	$13 \cdot 0$	$7 \cdot 1$

The structure of bis(dimethyl-o-thiolophenylarsine)platinum(II) is one in which individual molecules of $\mathrm{PtAs}_{2} \mathrm{~S}_{2} \mathrm{C}_{16} \mathrm{H}_{20}$ of the trans isomer, depicted in Fig. 1, pack together in the manner shown in projection by Figs. 2 and 3. The packing is rather spacious with

Fig.1. A diagram illustrating the configuration of the bis-(dimethyl-o-thiolophenylarsine)platinum(II) molecule and showing some bond distances (\AA) and angles (${ }^{\circ}$).
intermolecular contacts generally greater than $3.6 \AA$. Non-bonding approach distances of less than $4 \cdot 0 \AA$ are listed in Table 4.

Table 4. Some interatomic approach distances of less than $4 \AA$ in the crystal of
bis(dimethyl-o-thiolophenylarsine)platinum(II)
The superscripts denote the following symmetry transformations of the parameters in Table 2.

	$\begin{array}{cc} \text { No } & \\ \text { superscript } & x \\ 1 & \bar{x} \end{array}$	$\begin{gathered} y \\ \frac{1}{2}+y \end{gathered}$	
Pt -C(71)	3.903 (15) \AA	$\mathrm{C}(4)-\mathrm{C}\left(2^{1}\right)$	3.876 (5) \AA
$\mathrm{Pt}-\mathrm{C}\left(8^{1}\right)$	$3 \cdot 775$ (12)	$\mathrm{C}(5)-\mathrm{C}\left(2^{1}\right)$	3.891 (5)
$\mathrm{S}-\mathrm{C}\left(1^{1}\right)$	$3 \cdot 971$ (12)	$\mathrm{C}(3)-\mathrm{C}\left(2^{1}\right)$	3.922 (5)

Each individual molecule consists of a squareplanar arrangement of atoms about a central, fourcoordinated platinum atom. There is no evidence of interactions in the octahedral sites of the platinum atom. The closest intermolecular approach to the platinum atom is $C(8)$ at a distance of $3 \cdot 78 \AA$. The bond distances and angles within a molecule are listed in Tables 5 and 6.

Table 5. Bond distances in a molecule of bis(dimethyl-o-thiolophenylarsine)platinum(II)

Standard deviations are given in brackets.

$\mathrm{Pt}-\mathrm{As}$	$2.354(1) \AA$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.380(12) \AA$
$\mathrm{Pt}-\mathrm{S}$	$2.308(3)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.410(14)$
$\mathrm{As}-\mathrm{C}(1)$	$1.933(10)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.364(15)$
$\mathrm{As}-\mathrm{C}(2)$	$1.942(10)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.400(16)$
$\mathrm{As}-\mathrm{C}(3)$	$1.909(10)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.375(15)$
$\mathrm{S}-\mathrm{C}(4)$	$1.769(10)$	$\mathrm{C}(8)-\mathrm{C}(3)$	$1.411(13)$

The Pt-As bond distance of $2 \cdot 364$ (1) \AA is appreciably shorter than the sum of the square covalent radius for platinum(II) and the tetrahedral radius for arsenic ($1 \cdot 31+1 \cdot 18=2 \cdot 49 \AA$) (Pauling, 1948). It is also shorter than the Pt-As bond distance of $2 \cdot 380(15) \AA$ found in $\mathrm{Pt}(\text { diarsine })_{2} \mathrm{X}_{2}$, (Stephenson, 1962, 1964; Stephenson \& Jeffrey, 1963)], where diarsine represents the ligand o-phenylenebisdimethylarsine and X is

Fig. 2. An (010) projection of the unit-cell contents of bis(dimethyl-o-thiolophenylarsine)platinum(II). Some non-bonded approach distances (\AA) are shown.

Fig.3. A (100) projection of the unit-cell contents of bis(dimethyl-o-thiolophenylarsine)platinum(II). Some non-bonded approach distances (\AA) are shown.
either iodide or chloride. The Pt-As distances obtained for the diarsine complexes were explained as being due to the overlap between the unfilled ligand d orbitals and the filled metal d orbitals. In a similar way, the short Pt-As distance in the thio-arsenic complex may be considered to be due to $d \pi-d \pi$ overlap. In both the diarsine and thio-arsenic ligand complexes the formation of the dative, σ-bond will confer a positive charge on the ligand and negative on the metal. The back donation of this negative charge from the metal atom depends upon the availability of the d orbitals to accept the excess negative charge. In the case of the diarsine ligand both arsenic atoms accept the same degree of charge. However, in the thioarsenic ligand a distinction between the amount of charge accepted by the platinum-coordinated atoms is likely. Because of the strong donor properties asso-
ciated with sulphur it is unlikely that these atoms would readily accept any large degree of negative charge. The bulk of the excess negative charge would be expected to be distributed to the arsenic atom by $d \pi-d \pi$ overlap, this double bonding becoming evident in a shortening of the Pt -As bond distance from the normal covalent value. The $\mathrm{Pt}-\mathrm{S}$ bond distance of $2 \cdot 308$ (3) \AA is significantly shorter than the sum of the square covalent radius for platinum(II) and the normal covalent radius for sulphur $(1.31+1 \cdot 04=2.35 \AA)$.

Finally, examination of all metal-carbon distances reveals some interesting facts. The As- CH_{3} distances of $1.933(10)$ and $1.942(19) \AA$ are in good agreement with similar distances observed in the diarsine complexes (Stephenson, 1962, 1964; Stephenson \& Jeffrey, 1963; Duckworth \& Stephenson, 1969). There is a significant difference $(0.03 \AA$) between the As-C (benzene)

Table 6. Bond angles, defined by three atoms with the central atom at the vertex

$\mathrm{S}-\mathrm{Pt}-\mathrm{As}$	$87.7(1)^{\circ}$
$\mathrm{Pt}-\mathrm{As}-\mathrm{C}(1)$	$118.9(4)$
$\mathrm{Pt}-\mathrm{As}-\mathrm{C}(2)$	$116.9(3)$
$\mathrm{Pt}-\mathrm{As}-\mathrm{C}(3)$	$104.7(3)$
$\mathrm{Pt}-\mathrm{S}-\mathrm{C}(4)$	$107 \cdot 1(3)$
$\mathrm{As}-\mathrm{C}(3)-\mathrm{C}(4)$	$116.6(9)$
$\mathrm{As}-\mathrm{C}(3)-\mathrm{C}(1)$	$122.7(8)$
$\mathrm{S}-\mathrm{C}(4)-\mathrm{C}(3)$	$123.9(8)$
$\mathrm{S}-\mathrm{C}(4)-\mathrm{C}(5)$	$118.4(8)$

$\mathrm{C}(1)-\mathrm{As}-\mathrm{C}(2)$	$103 \cdot 8(5)^{\circ}$	
$\mathrm{C}(1)-\mathrm{As}-\mathrm{C}(3)$	$106 \cdot 3(5)$	
$\mathrm{C}(2)-\mathrm{As}-\mathrm{C}(3)$	$1050(5)$	
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	118	(1)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	121	(1)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	129	(1)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	111	(1)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(3)$	121	(1)
$\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{C}(4)$	121	(1)

and $\mathrm{As}-\mathrm{CH}_{3}$ bond distances and this compares favourably with the difference between $s p^{2}$ and $s p^{3}$ covalent bond radii for the carbon atom (Coulson, 1963). Moreover, considerable deviation from a tetrahedral arrangement about the arsenic atom with respect to the two methyl carbon atoms is obvious when it is noted that both $\mathrm{Pt}-\mathrm{As}-\mathrm{CH}_{3}$ bond angles are 116.9 (0.3) and $118.9(0.4)^{\circ}$, which are significantly different from the normal tetrahedral angle $\left(109^{\circ}\right)$. The sulphur-carbon distance of $1 \cdot 769(10) \AA$ is in good agreement with previously observed distances (Craig, Pallister \& Stephenson, 1970).

The best least-squares planes through various atoms in the molecule have been calculated following Schomaker, Waser, Marsh \& Bergman (1959), using a diagonal weight matrix. The platinum, arsenic and sulphur atoms are precisely coplanar, whereas the equation of the molecular plane is:

$$
-0.584 X+0.693 Y+0.542 Z-0.022=0
$$

where the coordinates X, Y and Z are in \AA units refer to the crystallographic axes. There are no significant deviations of any of the atoms from this plane. The molecular plane is inclined at an angle of 48.7° to the (010) plane.

The compound bis(dimethyl-o-thiolophenylarsine)palladium(II) is isomorphous with the corresponding platinum(II) compound. Unit-cell dimensions and structure amplitudes were obtained from zero-level precession photographs.

Bis(dimethyl-o-thiolophenylarsine)palladium(II)
 $\mathrm{PdAs}_{2} \mathrm{~S}_{2} \mathrm{C}_{16} \mathrm{H}_{20} \quad$ F.W. $532 \cdot 68$

Monoclinic: $a=7 \cdot 81 \pm 0 \cdot 04, b=9 \cdot 68 \pm 0 \cdot 05$,

$$
c=12 \cdot 97 \pm 0.06 \AA, \beta=104 \cdot 0^{\circ} . U=951 \AA^{3}, Z=2
$$

Space group $P 2_{1} / c$ from systematic absences.
S-Demethylation of a compound of the type $\mathrm{Pd}\left(\mathrm{As}-\mathrm{SCH}_{3}\right)_{2} \mathrm{X}_{2}$ thus leads to the formation of a trans isomer of the type $\operatorname{Pd}(\mathrm{As}-\mathrm{S})_{2}$ in which the ligand behaves as a bidentate and is strongly bound to the transition metal atom.

The authors would like to acknowledge the financial assistance of the Australian Research Grants Committee.

References

Beale, J. P. \& Stephenson, N. C. (1970). Acta Cryst. B26, 1655.

Busing, W. R. \& Levy, H. A. (1967). Acta Cryst. 22, 457.
Chiswell, B. \& Livingstone, S. E. (1960). J. Chem. Soc. p. 1071.

Coulson, C. A. (1963). Valence, 2nd ed., p. 210. Oxford Univ. Press.
Craig, D. C., Pallister, E. T. \& Stephenson, N. C. (1970). To be published.
Craig, D. C. (1969). Private communication.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321.
Dauben, C. H. \& Templeton, D. H. (1955). Acta Cryst. 8, 841.

Duckworth, V. F. \& Stephenson, N. C. (1969). Inorg. Chem. 8, 1661.
Hoppe, W. (1965). Angew. Chem. 77, 484.
International Tables for X-ray Crystallography (1968). Vol. III, p. 202. Birmingham: Kynoch Press.
Kastalsky, V. \& McConnell, J. F. (1969). Acta Cryst. B25, 909.
Lindoy, L. F., Livingstone, S. E. \& Lockyer, T. N. (1967). Inorg. Chem. 6, 652.
Livingstone, S. E. (1958). J. Chem. Soc. p. 4222.
Pauling, L. (1948). The Nature of the Chemical Bond, 2nd ed., p. 179. Ithaca: Cornell Univ, Press.
Schomaker, V., Waser, J., Marsh, R. E. \& Bergman, G. (1959). Acta Cryst. 12, 600.

Stephenson, N. C. (1962). J. Inorg. Nucl. Chem. 24, 791.
Stephenson, N. C. (1964). 17, 592, 1517.
Stephenson, N. C. \& Jeffrey, G. A. (1963). Proc. Chem. Soc. p. 173.

